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Quantum effects in systems with accelerated mirrors: 11. 
Electromagnetic field 

V P Frolov and E M Serebriany 
P N Lebedev Physics Institute, Leninsky Prospect 53, 117924 Moscow, USSR 

Received 20 February 1980 

Abstract. The problem of the electromagnetic vacuum state definition in a part of 
Minkowski space bounded by a single spherical mirror or two concentric spherical mirrors 
which expand with a uniform acceleration is considered. The causal Green functions and 
the vacuum stress-energy tensor for these systems are obtained. 

1. Introduction 

In the previous paper (Frolov and Serebriany 1979) (paper I) a new method was 
proposed which allows one to obtain the Green functions of the massless scalar field in 
the four-dimensional space-time in the presence of the moving conducting boundaries 
(mirrors) of a special form. This method was applied to the particular cases of a single 
spherical mirror and a pair of concentric spherical mirrors which expand with uniform 
acceleration. The main steps of this method are: (i) the introduction of imaginary time 
T = it; (ii) the demonstration that the corresponding Euclidean Green function vanish- 
ing on the analytically continued boundaries coincides with the potential of a unit point 
electric charge in the four-dimensional space; (iii) the use of the method of images to 
find this potential; (iv) the definition of the causal Green function in a physical space 
using the Wick rotation; (v) the reconstruction of the spaces of in- and out-states 
corresponding to the obtained causal Green function, and (vi) evaluation of the in-in 
Green function and calculation of the vacuum stress-energy tensor. 

In this paper we use this method to define the electromagnetic causal Green function 
(0 3) and the vacuum stress-energy tensor (§ 4) for the same systems with expanding 
mirrors which were considered in I, that is in the space outside or inside a single mirror 
described by the equation I;, : (x)’  = x2 - t2  = a 2  (problem A) and in the cavity between 
two concentric spherically symmetric mirrors E, and I;b described by the equations 
E,: (x ) ’  = a’, Z b :  (x) ’  = b2 ,  a < b, (problem B). A detailed discussion of these systems 
together with the notation used in this paper can be found in I. The corresponding 
vacuum states are shown (in the Appendix) to be stable. To get over the difficulties 
arising because of the gauge group presence some general formulae for the Green 
functions in the gauge invariant theories are given and the vacuum stability condition in 
the gauge invariant form is obtained in 8 2. 
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2. The Green functions for the gauge-invariant theory in an external field 

The theory we are interested in can be described by an action 

S[41= ;4 ISV4 ' (2.1) 

where 4' are dynamical fields and SI, is a self-adjoint second-order linear differential 
operator, the coefficients of which are dependent on some external field. From now on 
the DeWitt compact notations are used (DeWitt 1965). The general formulae of this 
section are specified and used for the problem under consideration in the following 
sections. If 

SI, = C . Y S , I * . u ( ~ ,  x'1-W; - f ' K ) S , r r ( x ,  x')--(TI,  + iNLL)S(~ ,  x') 
P y  = P? = PK", N ;  = -NF, TI, = TI, 

then the canonical bilinear form 

defined for any two solutions 4' and 4' of the field equations does not depend on the 
particular choice of the total Cauchy surface C. 

We suppose that the action (2.1) is invariant under the Abelian gauge group of 
transformations S 4 i  = R&*, where Rh are the generators and t " (x )  are the group 
parameters. In this case the field equations and the form B are degenerate, that is 
SijRL = 0 and B(4, R&") = 0 for an arbitrary solution 4'. To single out the physical 
modes following DeWitt (1965) we impose the supplementary conditions 

RiUcpi = 0, .&$ = 0 (2.3) 

where Rim = yijRL and y i j  is a completely local continuous symmetric matrix of such a 
form that the symmetric operator Fop = Ri,Rd is non-singular and Rim satisfies the 
equation R:yijRL =Fap. In the space 3 of solutions satisfying (2.3) the form B is 
non-degenerate. Denote by U the basis (uA,  u X )  in 3 normalised as follows: 
B(uA, U B )  = 8,  B(u:,  U B )  = iSAB. The quantum field q5 may be written in the forrn 

4' = aAua + u a u y  + R Le" (2.4) 

where U ;  = %(UA, 4 )  and uA = -iB(u:, 4 )  are the operators of the creation and 
annihilation of particles in a physical mode uA and 5" are arbitrary Hermitian functions 
of the uA, U:. The usual form of the commutation relations for U A  and uk is a simple 
consequence of the following gauge invariant form of the commutation relations for the 
field c $ ~ :  

[B(q5 , fd ,  B(4,fdl= -iB(fI,fd 

which is to be held for arbitrary C-number solutionsff andfi. The field c$i is said to be 
taken in the 3 gauge if 8" in equation (2.4) is put equal to zero. 

Now consider the situation when two bases +U and -U are given which are 
determined by an appropriate positive frequency choice in the future (+U)  and in the 
past ( -U) .  The corresponding in- and out-vacuum states are defined as follows: 

+aA/out, vac)= - iB(+ui ,  c$)iout, vac) = 0, 

-aAlin, vac) 3 - ~ B ( - u ; ,  &)Iin, vac) = 0. 
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Two Green functions are of particular interest G$,) = i(in, vaclT(q5iq5")lin, vac) and 
G"' = S i 1  (out, vac\T(qbiq5")\in, vac), where So = (out, vacjin, vac). The first one can be 
used to find the in-vacuum expectation value. The second function is a causal 
(Feynman) Green function which contains all the necessary information about the 
linear quantum system. These Green functions are evidently not gauge invariant. If the 
field q5 is taken in the 3 gauge then we refer to G& and G"' as the Green functions in 
3 gauge. The difference between the Green functions taken in two different gauges is a 
pure gauge term of the form D"'= RLp"' +qaiRL +R:t""R$. For any two gauge 
invariant functionals A and B (A,,R; = B,,;R; = 0 )  the expressions A,iG$J3,i, and 
A,iGij'B,,, are gauge independent. 

To find an explicit expression for G"' it is convenient to introduce a new mixed basis 
+U-: (+uk ,  - u g )  obeying the normalisation conditions B ( + u A ,  +ug) = B(-u:, - U ; )  = 
0 ,  B(-u;, + U S )  = ~ u A B .  Using this non-orthogonal basis one can write in the 22 gauge 

q5i = +u+d- ' -u* '  + + u i d - ' - U ,  

G"' = i[e(i, j ' )+uid- ' -u*J '+ O ( j 1 ,  i)+u"d-'-u*i]. 

To find the vacuum stability condition we notice that in the 3 gauge for i f j '  f m" 
the equality Pi"'= G'''b,, I k  G*k""= +u'd- 'B( - U *  > +  u*)d- ' * -u" '=  0 is equivalent to 
B(-u;, +U;) = 0, that is it is a necessary and sufficient condition for vacuum stability. 
Using the gauge invariance property of the form B one can verify that this vacuum 
stability condition can be written in the gauge-invariant form 

A,iGii'bi,k'G*k""B,m,~ = 0, i j '  f m" (2 .5 )  

which is to be satisfied for an arbitrary pair of invariants A and B. If the vacuum is stable 
then G&) = G"'. In the opposite case, to express G$) in terms ofG"' one must resolve 
a system of equations analogous to equations (A1,8)-(A1.10) of paper I. 

3. The electromagnetic Green functions 

In this paper we restrict ourselves by considering the vacuum stress-energy tensor for 
the electromagnetic field a,. The action S[a ]  = -$ f , v f " v  d4x, where f W y  = a",, - a,,v 
provides the Maxwell equations f,? = 0. The boundary conditions on the moving 
mirror surface 2 are E ~ ~ ~ ~ ~ ~ ~ ( x ) [ ~ ( x ) ~ ~ ~ ~  = 0, where 6" is a vector normal to E. These 
boundary conditions may be considered as a special type of the external field. The 
action and the boundary conditions are invariant under gauge transformations a, + 

as + d,x. This theory is obviously a particular case of the general theory considered in 
the previous section with the identifications 

i , j + A ,  P ,  4' + ah, R + RA = - 8 , A  ( x ,  X I )  
- ( - g ) l / 2 ( g A ~ g f i v  - i g A f i g p "  -1 PLL p ; ~  ~ ~ A P ; L L ~  - 

2g g ) 

N c  =0,  T, = 0. 

The canonical bilinear from B can be written as 

where C is a total Cauchy surface in the problem under consideration. 
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Consider the inversion transormation x + i = J,x = ( U ~ / ( X : ) ~ ) X  and define a',(;) = 
( J a ) , ( i )  = ( a x " / a f " ) a y ( x ) .  Using the conformal invariance of the Maxwell equations 
one can show that if a,(x) is a solution of the free equations then a",(Ja), is also a 
solution. Moreover the solution 8, = a, - a', satisfy the boundary conditions 
~ ~ " ~ ~ f , ~ & ~ ~ ~  = 0. It should be emphasised that if the solution a, is taken in a particular 
9. gauge then in general a', does not satisfy 9. gauge conditions and to have the solution 
ip in the 9. gauge one needs to add a pure gauge term. 

In the same manner one can show that if Glq! is a free causal Green function in a 
given 9. gauge then the Green function for the problem A in the 9. gauge can be written 

GfiLy,(xIx') = ( I  - Ja)GFi,(Xix') + (a pure gauge term), 

( J a G ( " ) ) , v ( ~ ] ~ ' )  = (ai^/dx")G??,(ilx'). 

In the case of the problem E the corresponding Green function is 

(3.1) 

GpY,(x lx') = ( I  - K)GE;, ( x  Ix') + (a pure gauge term) (3.2) 
where 

K=(I -JaJb) - ' (J , -JaJb)+(I -JbJ , ) - ' (Jb -Jd , )  

In the Appendix it is shown that these Green functions satisfy the vacuum stability 
condition (2.5). 

4. Electromagnetic vacuum stress-energy tensor. 

The electromagnetic strength tensor f,,, = a",, -a,,+ = F",:a,, is gauge invariant. We 
may use this invariant to determine the gauge-invariant Green function Gwu;Afy, (xlx') = 
FzEG,,spa~,Ff:r;, . If the mirrors are absent G;:;A,y, satisfies the equation 

(x~x')= ( v 7 A a y ' - ~ Y y a A ' ) t i ( ~  -x') (4.1) (a/aX&)G(0)Wu;A'Y' 

and can be written in the form (a, =a /axp ,  a,,'= a/ax'") 
G (0) ( 0 )  

d,Ly;Aly,(xlX') = qUr' a,aA,-t vFA & & - ~ y A I  a.a,,- vlly, a d A f  
, v ; ~ i y , ( ~ I ~ ' )  = d,,;A,Y,G (xIx') 

(4.2) 

The invariant Green functions calculated for the problems A and B can be presented 

(4.3) 

in the form 

where 
GFV;Any' = ( I  - K)GE;;,.,, 

K = J, (problem A) 

K = J, + J b - J a J b  - J d ,  + JaJbJ, + J J a J b  - -  . * (problem B) 
(4.4) 

and the action of the inversion operator J, is defined as 
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where 

i a2 1 
J a ( ~ ' ) G ' O ' ( f l ~ ' )  = 7 ~ 

We do not indicate in (4.3) on which point the operator of inversion acts. This is 
possible because of the following property of the Green function 

4.rr ( x ' ) ~  (x" - a ' / ( ~ ' ) ~ x ~ ) '  +ic sign(x')' 

Ja(x)G@v;~'y' (X Ix') = J a ( x ' ) G r u ; A \ ' y '  (X: IX') 
The Green functions (4.3) and (4.4) satisfy the boundary conditions 

a ' p ' y ' S '  
~ " u P u G ~ L y ; a ~ p ~  (X 1 x ' ) t p  (x)I,,z = E G @ u ; a ' p , ( ~ I ~ ' ) S y , ( ~ ' ) l X , E p  = 0. 

They can be written in the explicit form 

Problem A: 

Problem B: 

1 U 2  1 
(x )2{ (a /~ )2 f l [ a2 / (x )2~x  - x'J2+ic sign(x1' - a w u ; a ' ~ ' ( X I X ' ) - -  

Because of the vacuum stability property the vacuum stress-energy tensor can be 
defined by a relation 

T'"" (x) = (in, vaclT& (x)lin, vac) 

= -i lim(SgSi', - a 7 - / @ Y ' 7 1 , p , ) G ~ ~ ~ ~ ~ , ( ~ I ~ ' )  
x"x 

The subscript 'reg' means that the vacuum expectation value in the space without 
mirrors is subtracted. The calculations give 

Problem A: 

T@'"(x) = 0 

Problem B: 
(4.5) 

These results are very similar to the corresponding results of the paper I for the 
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improved stress-energy tensor of the scalar massless field. The only difference is the 
value of the constant t (a ,  b ) .  

When the acceleration of both mirrors in the problem B tends to zero and the 
distance between them is fixed, we obtain two parallel plane mirrors. Using the 
coordinate shift x, + x Y  - s t a  and finding the limit of equation (4.6) when a, b -+ 00, 

A = b - a  = constant, one has 

which reproduces the results obtained by Brown and Maclay (1969). 

Appendix. Proof of the vacuum stability condition 

Let the equation D,[4]  = 0 for a field 4i be invariant under conformal (g -+ = o2 g, 
4 + q! = $ ( m ,  4 ) )  and general coordinate transformations. Then the corresponding 
canonical bilinear form B also possesses this property (Frolov 1979). Now consider this 
equation in a flat space-time. If x + 2 = Jx = ( U ~ / ( X ) ~ ) X  is the inversion transformation 
(dx, dx, = o2 d2,, w = u ~ / ( x ) ~ )  and 4 + 6 = J4 is the corresponding transformation 
of the field (i.e. the transformation induced by the inversion x -+ Jx mapping combined 
with an appropriate conformal transformation with w as a conformal factor), then one 
has Bfi($l, $ 2 )  = Bu(41, 4 2 ) ,  where the subscript indicates the three-dimensional 
region of the integration (fi = JU). Here we restrict ourselves by considering the 
exterior problem A. The vacuum stability proof in the other cases can be easily given 
using the same method. 

In the exterior problem A one can take as U the part of the t = 0 plane R 3 :  U = 
{x: lx12aa }. In this case ( I - t J ) U  = R 3 .  Using the property of the inversion operator 
J 2  = I one has 

2 

B C J ( ~ I  - $19 4 2 -  $2) = Bot61 - 417 $ 2 -  4 2 )  

= $ B R 3 ( 4 1  -619 4 2 - 6 2 )  = B R 3 ( 4 1  -61, 42) (‘41) 

These relations and the vacuum stability in a Minkowski space imply that the vacuum 
stability condition in the problem under consideration is equivalent to the following 
condition 

which is to be satisfied for arbitrary points x, x” with X ~ < O < X ” ~ .  Here Hap,= 
(JG(o)),B,(xIx’) = (8;: - ~ ( X ’ “ ’ X & , / ( X ’ ) ~ ) )  ( u ~ / ( x ’ ) ~ ) G ~ ~ , ( x I u ~ / ( x ‘ ) ~ x ’ )  and D&,, = 

a,, . Because of the gauge invariance of the vacuum stability condition 
(2.5) it is enough to verify equation (A2) taking the electromagnetic Green function 
GL:, in a radiative gauge (ao = 0, div a = 0): 

a,, - 

Gfi, = S ~ S ~ ’ , S a b , G ‘ O ’ ( ~ / ~ ’ ) + .  . . , a, b = 1,2,  3. (A3) 

The G“’(x I x ’ )  is a causal Green function of the scalar field. The ellipsis denotes pure 
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gauge terms which do not contribute to IIOL10L2;11~11~. Substituting equation (A3) into 
equation (A2), after calculation one has 

where J a ( x ) f ( x )  = (a * / (x ) ’ ) f ( (a ’ / (x ) ’ )x ) .  If ( x  - x ” ) ’ <  0 ( ( x  - x ” ) ’ >  0) then using the 
Lorentz tranformation one can put x = x”= 0 (xo+ -0, xo”+ +O). In both cases the 
integration in (A4) can be fulfilled in an explicit way and one can verify that the vacuum 
stability condition Ilcrlaz;cLrcr; = 0 is satisfied. 
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